A Novel Arsenic Cation,  $[Me_2As-AsMe_2I]^+$ , and the Synthesis of New Gallium-Arsenic Compounds

ALAN BOARDMAN, RONALD W. H. SMALL and IAN J. WORRALL

Department of Chemistry, The University of Lancaster, U.K. (Received August 6, 1986)

The gallium halides  $Ga_2X_4$  have proved to be useful reagents in the synthesis of bonds between gallium and a number of elements e.g. C [1], S and Se [2].

The importance of gallium-arsenic compounds in the semiconductor industry has prompted us to investigate analogous reactions with arsenic compounds and here describe preliminary findings.

## Synthesis of $Me_2AsGaX_2$ (X = Cl, Br, I)

Excess dry dimethylarsine was condensed on to solid  $Ga_2I_4$  in vacuo. On stirring the mixture at 20 °C the halide slowly dissolved and hydrogen was evolved; on removal of excess dimethylarsine white powders of composition  $Me_2AsGaX_2$  (X = Cl, Br, I) remained. Their vibrational spectra indicate that they are dimers probably with As bridges, similar to the S compounds previously reported [2].

## Reaction between $Me_2AsI$ and $Ga_2I_4$

Excess dry  $Me_2AsI$  was condensed on to  $Ga_2I_4$ in vacuo and the mixture stirred rapidly at room temperature. After 2 h a yellow crystalline solid of composition  $Me_4As_2GaI_5$  was deposited; satisfactory crystals for X-ray analysis were obtained by recrystallisation from benzene; other as yet unidentified Ga/As species remained in solution.  $In_2I_4$  undergoes a similar reaction and  $Me_4As_2InI_5$  was also isolated and we propose that this is isostructural with the gallium compound since it has almost identical vibrational spectra.

Crystal data for Me<sub>4</sub>As<sub>2</sub>GaI<sub>5</sub> (20°): orthorhombic, space group  $P2_{1}2_{1}2_{1}$ , a = 14.82(1), b = 12.32(1), c = 10.53(1) Å. Intensity measurements were made on a Stoe STADI-2 diffractometer using Mo K $\alpha$  radiation. 2082 reflections were measured and after elimination of those for which  $I < 3\sigma(I)$  there remained 1375 unique reflections which were used in the final refinement. The structure which was solved using MULTAN [3] and SHELX [4], was refined anisotropically for Ga, I and As, and isotropically for C; R value = 0.059. Fractional atomic coordinates are given in Table I. See also 'Supplementary Material'.

The crystal structure contains the discrete ions  $[Me_2As-AsMe_2I]^+$  and  $GaI_4^-$ . Bond distances and

TABLE I. Fractional Atomic Coordinates (×10<sup>4</sup>)

|       | x        | У        | z        |
|-------|----------|----------|----------|
| I(1)  | 1077(2)  | 2760(2)  | 5904(2)  |
| I(2)  | 4846(2)  | 3968(2)  | 10344(3) |
| I(3)  | 4984(2)  | 1345(2)  | 7804(2)  |
| I(4)  | 4537(2)  | 783(2)   | 11656(2) |
| I(5)  | 2532(2)  | 2244(2)  | 9440(3)  |
| As(1) | 2307(3)  | 2010(3)  | 4500(4)  |
| Ga    | 4228(3)  | 2123(3)  | 9817(3)  |
| As(2) | 3440(3)  | 3329(3)  | 3874(5)  |
| C(1)  | 2829(29) | 930(33)  | 5447(40) |
| C(2)  | 1759(27) | 1330(30) | 3056(38) |
| C(3)  | 2540(36) | 4415(38) | 3305(50) |
| C(4)  | 3618(33) | 3862(37) | 5680(44) |

TABLE II. Selected Bond Distances (Å) and Angles (°) in  $As_2(CH_3)_4GaI_5$ 

| I(1)-As(1)       | 2.522(4 | 4)       | I(2)–Ga              | 2.512(4)  |
|------------------|---------|----------|----------------------|-----------|
| I(3)-Ga 2        | 2.581(5 | 5)       | I(4)–Ga              | 2.585(4)  |
| As(1)-As(2)      | 2.427(5 | 5)       | I(5)–Ga              | 2.550(5)  |
| As(1)-C(2)       | 1.916(4 | 40)      | $A_{s(2)}-C(3)$      | 1.982(51) |
| As(2) - C(4)     | 2.028(4 | 47)      | As(1) - C(1)         | 1.833(42) |
| I(1)-As(1)-A     | s(2)    | 114.4(2) | I(1) - As(1) - C(1)  | 105(1)    |
| I(1) - As(1) - C | (2)     | 108(1)   | As(2) - As(1) - C(1) | 110(1)    |
| As(2) - As(1) -  | -C(2)   | 112(1)   | C(1) - As(1) - C(2)  | 107(2)    |
| As(1) - As(2) -  | -C(3)   | 94(1)    | C(3) - As(2) - C(4)  | 99(2)     |
| I(2)-Ga-I(3)     |         | 111.0(2) | I(2)-Ga-I(4)         | 110.4(2)  |
| I(2)-Ga-I(5)     |         | 109.9(2) | I(3) - Ga - I(4)     | 107.5(2)  |
| I(3)-Ga-I(5)     |         | 108.7(2) | I(4)-Ga-I(5)         | 109.2(2)  |
|                  |         |          |                      |           |

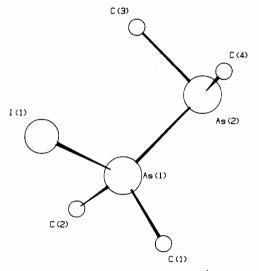



Fig. 1. The structure of  $[Me_2As-AsMe_2I]^+$ .

angles are given in Table II; the cationic species is shown in Fig. 1 and its staggered structure in Fig. 2. The  $GaI_4^-$  is approximately tetrahedral with similar

© Elsevier Sequoia/Printed in Switzerland

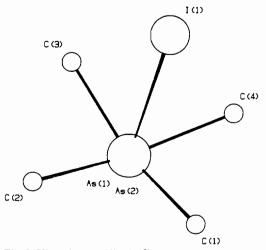



Fig. 2. View along As(1)-As(2).

bond distances and angles to those found in  $Ga_2I_4$  [5]. There are no abnormal interionic distances and all bond distances lie within expected ranges.

The reaction is clearly complex; the first stage probably involves the insertion of  $Ga^+$  into the As-I bond to give Me<sub>2</sub>As-Ga<sup>+</sup>-I GaI<sub>4</sub><sup>-</sup>, followed by reaction with Me<sub>2</sub>AsI to give the As-As bonded cation.

This is the first example of an arsenic cation of this type although they have been postulated previously in the adduct dissociation in solution

 $Me_3As - AsEtCl_2 \leftrightarrow [Me_3As - AsEtCl]^+ Cl^- [6].$ 

## Supplementary Material

Lists of structure factors are available on request from the authors.

## References

- 1 W. Lind and I. J. Worrall, J. Organomet. Chem., 40, 35 (1972).
- 2 S. E. Jeffs, A. Boardman, R. W. H. Small and I. J. Worrall, Inorg. Chim. Acta, 9, L39 (1985).
- 3 P. Main, L. Lessinger, M. M. Woolfson, G. Germain and J. P. Declercq, 'MULTAN', a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, University of York, U.K. and Louvain, Belgium, 1977.
- 4 G. M. Sheldrick, 'SHELX 76', program for crystal structure determination, University of Cambridge, U.K., 1976.
- 5 G. Gerlach, W. Hoenle and S. Arndt, Z. Anorg. Allg. Chem., 486, 7 (1982).
- 6 G. E. Coates, B. J. Aylett, M. L. H. Green and D. M. P. Mingos, 'Organometallic Compounds', 4th edn., Chapman and Hall, 1979, p. 412.